Semantic perception, as one of our central research themes, refers to any perceptual process semantically enabled for different purposes. The semantic perception has increasingly being considered as a salient feature, and at the same time, the main challenge in the development of intelligent interactive systems. The focus of our research in this theme concerns methods and approaches that aim towards bridging the gap between perceptual data and meaningful semantic knowledge. More specifically, our research range over machine sensing modalities, techniques for extracting and learning perceptual representations, and semantic grounding (or anchoring), in order to derive representative semantic knowledge about the perceived world (from the viewpoint of a machine). Another aspect of our interest in semantic perception is on the autonomous acquisition of (context-related) knowledge used to enrich the representation of a given set of data. For the purpose of automating the knowledge acquisition process, our approach in semantic representation is relying on ontological techniques. However, due to the inevitable and non-trivial trade-off between expressivity of representation models and the complexity of the reasoning process upon the semantics, our research concerns, last but not least, the development of reasoning techniques applicable to the represented semantics of the perceived data.

Keywords:

  • semantic knowledge
  • ontological techniques
  • knowledge representation and reasoning
  • perceptual anchoring
  • machine sensing modalities.

Projects

MoveCare

MoveCare integrates an existing robotic platform with a domotic system, smart objects, a virtual community and an activity center, to …
Read More

ReGround

  …relational symbol grounding through affordance learning. The problem of symbol grounding attempts to associate symbols from language with a …
Read More

Semantic Robots

Semantic Robots is a strategic partnership between the Centre for Applied Autonomous Sensor Systems, which MPI is a part of, and …
Read More

Take Back the Night

To live in a safe and secure environment is one of the most basic needs of human beings. Independent of …
Read More

E-care@home

A current vision in the area of ICT-supported independent living of the elderly involves populating the home with electronic devices …
Read More

Projects

Interactive Deep Learning for Image Labeling and Analysis

Deep learning algorithms have shown to be successful in applications such as speech recognition and computer vision. A key component …
Read More

The work in this research direction contributes to the state-of-the-art in research areas such as social robotics, human-machine interaction and multi-agent systems. High-level semantic representations enables us to create interaction and collaboration between humans and robots, virtual characters, software and simulated agents. Our focus lies not just on creating those effective and intuitive interactive setups but also on evaluating them and predicting the effects of the interaction. The tools that we apply range from empirically grounded usability analysis to multi-actor systems and agent-based simulation.

In the area of interaction analysis, qualitative and quantitative tools of varying complexity which study relevant aspects in the particular application domain are applied. Examples taken from the mobile robotic telepresence systems domain include proxemics (spatial relationships), sociometry (conversation characteristics), presence, usability, and non-verbal cues (e.g. facial expressions and glare). Other examples taken from the domain of sensor networks for home environments include usage statistics and behavioral changes.

Interaction plays a central role in multi-agent systems. When and how actors interact determines the actual outcome of the overall system. Using agent-based simulation, we analyze complex socio-technical systems (e.g. in logistics) or predict future development of complex systems comprising diverse actors. Our research hereby relates to engineering complex models with theory and data-driven approaches. Frameworks for capturing complex interaction, for human immersion into simulated worlds as well as for sensor-based alignment of a running simulation to real-world dynamics form the current focus of research.

Keywords:

  • interaction quality
  • development of evaluation methods
  • multi-actor systems
  • agent-based simulation

Projects

Socrates

The MPI lab is part of the SOCRATES program in which we use our expertise in Mobile Robotic Telepresence (MRP) …
Read More